Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(21): 2942-2945, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38374791

RESUMO

By forming a nick at the adenylation site instantaneously, nucleic acids are efficiently adenylated by T4 DNA ligase. The subsequent ligation is successfully suppressed in terms of rapid conversion of the instantaneous nick to a more stable gap. It is helpful to understand enzymatic ligation dynamics, and the adenylated products can be used for various practical applications.


Assuntos
Ligases , Oligonucleotídeos , Monofosfato de Adenosina , DNA Ligases
2.
Anal Chem ; 95(46): 16819-16829, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37922263

RESUMO

Nonspecific amplification is a serious issue in DNA detection as it can lead to false-positive results and reduce specificity. It is very important to well understand its mechanism through sequencing nonspecific products. Here, an approach is developed using a nanopore sequencing technique after acquiring the long repetitive sequence of DNA products from nonspecific amplification. Based on the sequencing results, a new mechanism of nonspecific amplification designated as dynamic mismatched primer binding (DMPB) with the background DNA (bgDNA) is proposed. Unexpectedly, our findings show that the primers (∼20 nt) can bind to bgDNA for primer extension when only 6-11 fully matched (9-14 mismatched) base pairs are formed. After the single-stranded DNAs (ssDNAs) attached to the first primer are produced, more interestingly, with the aid of DNA polymerase, the other primer can bind to these ssDNAs in the case that the fully matched base pairs formed between them are even shorter than 6 bp. As a result, perfect "seeds" for polymerase chain reaction with information on both primers are produced so that exponential nonspecific amplification can occur. The DMPB mechanism can explain nonspecific amplification in other approaches as well. Finally, a mini-hairpin DNA is used to effectively inhibit nonspecific amplification by preventing the formation of an unexpected primer-bgDNA complex.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , DNA/genética , Reação em Cadeia da Polimerase/métodos , Primers do DNA , Sequências Repetitivas de Ácido Nucleico , DNA de Cadeia Simples , Técnicas de Amplificação de Ácido Nucleico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...